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Summary

The plant virus, cowpea mosaic virus (CPMV), has demonstrated a

remarkable capacity to induce anti-tumour immune responses following

direct administration into solid tumours. The molecular pathways that

account for these effects and the capacity of CPMV to activate human

cells are not well defined. Here, we examine the ability of CPMV particles

to activate human monocytes, dendritic cells (DCs) and macrophages.

Monocytes in peripheral blood mononuclear cell cultures and purified

CD14+ monocytes were readily activated by CPMV in vitro, leading to

induction of HLA-DR, CD86, PD-L1, IL-15R and CXCL10 expression.

Monocytes released chemokines, CXCL10, MIP-1a and MIP-1b into cell

culture supernatants after incubation with CPMV. DC subsets (pDC and

mDC) and monocyte-derived macrophages also demonstrated evidence of

activation after incubation with CPMV. Inhibitors of spleen tyrosine

kinase (SYK), endocytosis or endocytic acidification impaired the capacity

of CPMV to activate monocytes. Furthermore, CPMV activation of mono-

cytes was partially blocked by a TLR7/8 antagonist. These data demon-

strate that CPMV activates human monocytes in a manner dependent on

SYK signalling, endosomal acidification and with an important contribu-

tion from TLR7/8 recognition.

Keywords: cowpea mosaic virus; endosome inhibitor; monocytes; Syk sig-

nalling; TLR7/8.

Introduction

Plant virus-like nanoparticles (VLPs) provide a potential

tool for drug delivery, imaging and immune-based thera-

pies.1–4 Plant viruses can be produced at low cost, are rel-

atively easy to engineer, are pH and thermally stable, and

are non-infectious to human tissues. Some types of plant

viruses that have adjuvant properties in animals are

currently being assessed for their potential as a novel type

of tumour immunotherapy. The virions and VLPs of

cowpea mosaic virus (CPMV) have profound anti-tu-

mour effects when injected into tumours. These effects

have been demonstrated in various animal models, and

have been associated with induction of host immune

mechanisms.5,6 Similarly, VLPs from another plant virus,

papaya mosaic virus (PapMV), significantly slowed

Abbreviations: CPMV, cowpea mosaic virus; DC, dendritic cell; eCPMV, empty CPMV particles; LPS, lipopolysaccharide;
PapMV, papaya mosaic virus; PBMC, peripheral blood mononuclear cell; SYK, spleen tyrosine kinase; VLPs, plant virus nanopar-
ticles
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tumour progression and prolonged survival in mice chal-

lenged with melanoma tumours.8 The effects of PapMV

were dependent on interferon (IFN)-a.
The structural characteristic of CPMV includes an

icosahedral capsid (measuring ~30 nm in diameter) com-

posed of 60 small and large coat protein units each form-

ing a pT = 3 capsid. The particles encapsidate a bipartite,

single-stranded RNA genome.9 Native CPMV can be pro-

duced either by mechanical inoculation of their host

plant, black-eyed peas, or by agroinfiltration using Aus-

tralian tobacco plants. The latter method is especially use-

ful for generating genome-free empty CPMV (eCPMV)

particles.10

Although CPMV has profound effects on tumour

immunity in animals, the activity of these particles in pri-

mary human cells is unknown. CPMV interacts with

human cells. For example, similar to murine macro-

phages, human macrophages readily internalize

CPMV.2,11,12 Furthermore, CPMV particles that are

mixed with human peripheral blood mononuclear cells

(PBMCs) preferentially adhere to monocytes and den-

dritic cells (DCs).2 Nonetheless, it is not known if CPMV

can mediate activation of these cells. Here, we provide

evidence that CPMV readily mediates activation of

human monocytes, macrophages and DCs. Our findings

indicate that the effects of CPMV on cellular activation

are dependent on spleen tyrosine kinase (SYK) signalling

and toll-like receptor (TLR) activation in the endocytic

compartment.

Materials and methods

CPMV propagation and purification

Cowpea mosaic virus particles were propagated and puri-

fied from black-eyed peas No. 5; the methods were as

previously described.13 The particles were characterized

by UV/visible spectroscopy, agarose gel electrophoresis,

sodium dodecyl sulphate�polyacrylamide gel elec-

trophoresis, and size exclusion chromatography and

transmission electron microscopy (Fig. S1). Endotoxin

levels were determined after each CPMV preparation

using LAL chromogenic endotoxin kit, and only samples

with endotoxin levels < X were used in the experiments

[X = 0�5 pg/ml lipopolysaccharide (LPS)].

Cells

This work, including blood draw procedures and written

consent forms for obtaining whole blood samples from

healthy adult volunteers, was approved by University

Hospitals of Cleveland Internal Review Board. PBMCs

were isolated from whole blood by centrifugation over a

Ficoll-Hypaque gradient as previously described.14 Cells

were counted by Beckman Coulter Vi-CELLTM XR Cell

Viability Analyzer (Beckman Coulter, Fullerton, CA).

RosetteSep and EasySepTM human monocyte isolation kits

(StemCell Technologies, Vancouver, BC, Canada) were

used according to the kit instructions to isolate human

monocytes by negative selection. Purity of isolated mono-

cytes (mean: 90�4%; range: 79�3%–96�9%) was assessed

by flow cytometry, measuring percentages of CD14+ cells

using a BD LSRFortessa flow cytometer (BD Biosciences,

San Jose, CA). PBMCs that were depleted of CD14+ cells

with human anti-CD14 microbeads (auto MACS pro cell

sorter; Miltenyi Biotec, Auburn, CA), were used for stud-

ies of DC responses to CPMV. Monocyte-derived macro-

phages were obtained by pre-incubating purified

monocytes in Roswell Park Memorial Institute 1640

(RPMI 1640) containing 1% penicillin streptomycin, 1%

HEPES (Lonza, Basel, Switzerland), 1% L-glutamine and

10% fetal bovine serum. These cell cultures were supple-

mented with 10 ng/ml rhGM-CSF (Gibco Life Technolo-

gies, Carlsbad, CA) and cells were incubated 6 days prior

to being used in assays. At this time, recovered cells have

marked increase in cell size and granularity as determined

by flow cytometry and consistent with macrophage mor-

phology (not shown).

Cell stimulation

To assess cellular activation, PBMCs, purified monocytes,

monocyte-derived macrophages or CD14-depleted

PBMCs were re-suspended in complete medium and

incubated overnight at 37° in the presence or absence of

CPMV particles (6 µg/ml), Imiquimod (1 µg/ml; Invivo-

Gen, San Diego, CA) or LPS (50 ng/ml; Sigma Chemical,

St Louis, MO). For studies with chemical inhibitors, 1�5
million cells/ml were pre-incubated for 2 hr +/� Syk

inhibitor (2 µM/ml; 2,3-dihydro-3-[(1-methyl-1H-indol-3-

yl) methylene]-2-oxo-1H-indole-5-sulphonamide; Cay-

man Chemical, Ann Arbor, MI) or +/� dynasore (50 µM/

ml; Abcam, Cambridge, MA). Chloroquine diphosphate

(10 µM: Sigma Chemical) and synthetic oligodeoxyri-

bonucleotide, ODN 2087 (TLR7/8 inhibitor, 8 µM; Mil-

tenyi Biotec) were pre-incubated with cells for 1 hr prior

to stimulation with CPMV.15 Following the incubation

period, cells were harvested from wells, washed and

stained for flow cytometric analysis. Cells were incubated

with antibodies for 15 min on ice, and then washed, fixed

and permeabilized with 1 9 perm/wash buffer (BD Bio-

science). Cells were incubated with anti-CXCL10 (FITC);

clone#B-C50 (Abcam) for intracellular staining. Cells were

then washed with 1 9 perm/wash buffer and assessed by

flow cytometry with a BD Fortessa instrument.

Statistical analysis

Statistical analyses were performed using Prism (GraphPad

Software, San Diego, CA). Wilcoxon matched-pairs signed-
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ranks test or Mann�Whitney U-test were used to deter-

mine significant (P < 0�05) differences in cells pretreated

or not with inhibitor, and for comparisons between cells

treated with various stimuli, respectively. Kruskal–Wallis

tests were used for multi-group comparisons.

Results

CPMV activates human monocytes and DCs

To investigate the potential of CPMV to activate human

immune cells, we incubated PBMCs overnight with

CPMV and assessed the expression of activation markers

on CD14+ monocytes using flow cytometric analyses.

Changes in cell surface markers were measured as

increases in the percentage of positive cells or as increases

in MFI following cellular activation. MFI was preferred

for markers constitutively expressed in most cells at base-

line. CPMV particles were used at 6 lg/ml for most

experiments. Dose–response studies indicated that 6 µg/
ml was near optimal, with detectable levels of activity

observed as low as 100 ng/ml (not shown). Cells were

incubated with LPS (TLR4 agonist) or Imiquimod (TLR7

agonist) as positive controls. Stimulation of PBMCs with

CPMV resulted in marked increases in the expression of

cell surface activation markers, CD86, PD-L1, HLA-DR

and IL-15R, in CD14+ cells. As anticipated, monocytes

readily responded to stimulation with the positive con-

trols, LPS or Imiquimod (Fig. 1).

Similar to the stimulation of monocytes in PBMCs, we

also observed activation of purified monocytes after incu-

bation with CPMV. In both experiments, we included

analyses of intracellular CXCL10/IP-10 expression, a che-

mokine induced by IRF-dependent signalling.16–19 Puri-

fied monocytes readily responded to CPMV stimulation

by increasing cell surface expression of CD86, PD-L1,

HLA-DR and IL-15R, and by markedly enhancing intra-

cellular expression of CXCL10 (Fig. 2). These data suggest

that CPMV can directly mediate activation of human

monocytes.

To assess the potential for CPMV to activate other cell

professional antigen-presenting cells (APCs), we evaluated

activation marker expression in DC subsets from CD14-

depleted PBMCs that had been treated with CPMV over-

night. DC subsets included CD11c+ CD123low myeloid

DCs (mDC) and CD11clowCD123+ plasmacytoid DCs

(pDC). CPMV induced expression of CD86 and PD-L1

in both mDC and pDC, although the effects were more

pronounced in mDC (Fig. 2a,b). In addition to DCs, we

assessed the potential for CPMV to activate monocyte-

derived macrophages. These cells were stimulated over-

night with CPMV and evaluated for expression of CD86

and PD-L1 as indicators of cellular activation. CPMV

readily caused induction of CD86 and PD-L1 in these

cells (Fig. S2c). The capacity of CPMV to cause the

induction of cytokine and chemokine secretion was

assessed in purified monocytes. Monocytes incubated

overnight with CPMV released significantly higher levels

of CXCL10, MIP-1a and MIP-1b into cell culture super-

natants compared with cells incubated in medium alone

(Fig. 3a�c). Unlike positive controls (Imiquimod or

LPS), CPMV did not significantly enhance release of

MCP-1, Gro-a, IL-6, IL-8, TNFa or SDF-1a into cell cul-

ture supernatants (Fig. 3d–i). In addition, CPMV did not

induce expression of IL-1b, suggesting an absence of

inflammasome activation (Fig. 3j).

Syk signalling is critical for monocyte activation
induced by CPMV

Syk is an important signalling molecule involved in vari-

ous innate receptor signalling pathways, including TLRs

such as TLR7 and TLR9.20 To determine if Syk may play

a role in monocyte activation by CPMV, PBMCs were

pre-incubated with Syk inhibitor and then stimulated

with CPMV overnight. Imiquimod or LPS stimulation

was tested for comparison. The addition of Syk inhibitor

to CPMV-stimulated PBMCs resulted in inhibition of

HLA-DR, CD86, PD-L1, IL-15R and CXCL10 (Fig. 4).

Similar results were observed with Imiquimod-stimulated

cells, although the effects of the inhibitor were less pro-

nounced. Syk inhibitor tended to only modestly diminish

responses to LPS stimulation. Curiously, in contrast to its

effects on other activation markers, Syk inhibitor actually

caused an enhancement in the induction of CD86 expres-

sion in monocytes treated with LPS (Fig. 4).

Activation of monocytes by CPMV depends at least
partly on dynamin activity, endosomal acidification
and TLR7/8/9

To investigate the mechanism of CPMV-mediated mono-

cyte activation in more detail, we tested whether activa-

tion of primary human monocytes could be blocked by

inhibition of endocytosis (dynasore), endosomal acidifica-

tion (Chloroquine) or by an antagonist of TLR7/8 (ODN

2087). To interfere with endocytosis, PBMCs were incu-

bated with or without dynasore for 1 hr followed by

stimulation with or without CPMV, Imiquimod or LPS.

The addition of dynasore to cell cultures partially abol-

ished CPMV induction of CD86, PD-L1 and HLA-DR

(Fig. S3a–c), but had limited effects on either Imiqui-

mod- or LPS-mediated activation of monocytes (not

shown). These data are consistent with a role for endocy-

tosis in the activity of CPMV.

To test for the importance of endosomal acidification

on CPMV responsiveness, PBMCs were pretreated with

Chloroquine for 1 hr followed by stimulation with or

without CPMV, Imiquimod or LPS. The addition of

Chloroquine to cell cultures markedly inhibited CPMV or
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Imiquimod induction of CD86, IL-15R, HLA-DR and

PD-L1 cell surface expression as well as intracellular

expression of CXCL10 in CD14+ monocytes; however,

Chloroquine had no effect on monocyte activation

induced by LPS (Fig. 5a,b).

To assess a specific role for TLR7/8 in monocyte activation

by CPMV, we pre-incubated cells with a specific TLR7/8

antagonist, ODN 2087, prior to stimulation with CPMV or

other TLR agonists (Imiquimod or LPS). The ODN TLR7/8

inhibitor partially inhibited activation of monocytes by

CPMV or Imiquimod, while having little effect on activation

induced by LPS (Fig. 5a,c). Together, these data are consis-

tent with a key role for endosomal TLR7/8 in CPMV-medi-

ated activation of human monocytes (Fig. 6).
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Figure 1. Monocytes are activated by cowpea mosaic virus (CPMV). Peripheral blood mononuclear cells (PBMCs) were incubated overnight in

complete medium alone or medium supplemented with CPMV (6 lg/ml), Imiquimod (1 lg/ml) or lipopolysaccharide (LPS; 50 ng/ml). (a) For

flow cytometric analyses, debris, dead cells and doublets were excluded with FSC versus SSC, FSC-A versus FSC-H and viability dye gating. His-

tograms are shown for CD14 + monocytes that were stained for expression of CD86, PD-L1, HLA-DR, IL-15R or CXCL10 (x-axis). (b) Summary

data using cells from different donors showing the medium for monocytes in PBMCs. Samples were evaluated using Mann–Whitney U-test. P-

value < 0�001 by Kruskal–Wallis test.
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Discussion

Novel therapeutics that induce anti-tumour immunity

such as immune checkpoint inhibitors, chimeric antigen

receptor cell therapies and tumour-associated antigen

cancer vaccines have shown considerable progress,21–24

but the development of immunotherapy for cancer is in

an early stage and more research and alternative

approaches are needed. The potential of virus-based

materials for medical applications has been recognized,

such as mammalian virus-based nanoparticles for gene

therapy and oncolytic virotherapy, which are currently in

clinical trials.25 Despite numerous novel virus-based

materials under investigation, plant viruses may have an

advantage because they are considered safer in humans

than mammalian viruses.26 Plant viruses do not replicate

in or infect mammals, can be administered at doses of up

to 100 mg (1016 particles) per kg body weight without

clinical toxicity,27,28 and show both biocompatibility and

biodegradability.28–30 Plant viruses and VLPs thereof have

been engineered as epitope display platforms and applied

in the context of cancer vaccines; for example, the potato

virus X (PVX) platform displaying idiotypic (Id), a weak

tumour antigen from B-cell lymphoma, successfully pro-

tected mice against lymphoma challenge through produc-

tion of Id-specific antibodies. In addition to its function

as epitope display platform, PVX acts as adjuvant and

stimulates immune responses through TLR-7 signalling.31

In alignment with these observations and recent evidence

suggests that PapMV mediates activation of human cells

in vitro and, similar to our findings with CPMV, requires

TLR7/8 signalling mechanisms.32

We have reported that CPMV nanoparticles can modu-

late the local microenvironment to relieve immunosup-

pression and potentiate anti-tumour immunity. The

response induced by CPMV can lead to systemic,

immune-mediated anti-tumour responses against unrec-

ognized metastases.33,34 A comparison study between

CPMV and another plant virus, tobacco mosaic virus

(TMV), indicated that CPMV versus TMV modulates the

tumour microenvironment in distinct ways.34 Interest-

ingly, nucleic acid-free VLPs of CPMV also have demon-

strated anti-tumour effects in murine models and canine

patients.7,33

Medium

Imiquimod

CPMV

Medium
400 600

400

200

0

600

400

200

0

300

200

100

0

Imiquimod

CPMV

Medium
Imiquimod

CPMV

Medium

Imiquimod

CPMV

(a)

(b)

4000

P < 0·004

P < 0·002
P < 0·005

P < 0·002

%
 P

D
-L

1

100

80

60

40

20

0

150 100

80

60

40

20

0

100

%
 C

D
86

%
 C

X
C

L1
0

50

0

P < 0·002

P < 0·002
Medium

CMPV

Imiquimod

P < 0·002

3000

H
LA

-D
R

 M
F

I

2000

1000

0

300

200

C
ou

nt

100

0
–103 103 104

HLA-DR CD86 IP-10 PD-L1

1050 –103 103 104 1050 –103 103 104 1050 –103 103 104 1050

Figure 2. Activation of purified monocytes by cowpea mosaic virus (CPMV). Purified monocytes were treated overnight with CPMV (6 lg/ml),

Imiquimod (1 lg/ml) or incubated in medium alone. (a) The cells were stained for expression of CD86, PD-L1, HLA-DR, IL-15R or CXCL10
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In this study, we investigated the capacity of CPMV

particles to trigger activation of human immune cells,

particularly professional APCs. We found that treatment

of cells with CPMV induced activation of monocytes,

DCs (pDC and mDC) and monocyte-derived macro-

phages. Most of our data centre on monocyte responses

to CPMV. In this context, it is important to recognize

that in addition to serving as precursors to tumour-asso-

ciated macrophages and DCs, monocytes that infiltrate

tumours can mediate important effects in this microenvi-

ronment, including contributions to tumour develop-

ment, survival (angiogenesis, immunosuppression) and

metastasis.35–44 In part, this may be due to the capacity

of primary monocytes to respond to hypoxic microenvi-

ronments in a manner similar to macrophages.45

A key objective of this study was to gain insight into

the molecular mechanisms underlying CPMV activity. To

understand downstream signalling pathways responsible

for CPMV activation of monocytes, we investigated the

importance of Syk signalling in CPMV-activated

monocytes. We found that inhibition of Syk markedly

impaired the capacity of CPMV to mediate activation of

monocytes. Syk is a tyrosine kinase required in many

immune cell signalling pathways. Syk signalling can con-

tribute to cellular activation and cytokine induction,46–49

and Syk has been implicated in cellular activation medi-

ated by several TLRs such as TLR4, TLR5, TLR7 and

TLR9. Syk is thought to contribute to TLR/MYD88 inter-

actions downstream of TLR ligation.50 Notably, Syk is

also implicated in other activation pathways such as C-

type Lectin receptor signalling.48 In preliminary experi-

ments, we were unable to block the activation of mono-

cytes by CPMV using anti-hDectin-1-IgG, which blocks

signalling by C-type Lectin receptors (not shown). Given

this observation and our other findings, we favour a

model whereby the importance of Syk in CPMV activity

is linked to endosomal TLR signalling.

TLR7 and TLR8 are endosomal TLRs that have been

implicated in the sensing of single-stranded ribonucleic

acid,51 and our data implicate these TLRs as contributors
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Figure 3. Purified monocytes exposed to cowpea mosaic virus (CPMV) produce CXCL10, MIP-1a and MIP-1b in vitro. (a–j) Purified monocytes

from six different donors were cultured overnight with CPMV (6 lg/ml), Imiquimod (1 lg/ml), lipopolysaccharide (LPS; 50 ng/ml) or incubated

in medium alone. Supernatants were collected, stored frozen and assessed in batch with luminex technology to determine cytokine/chemokine

concentrations. Summary data showing experiment (symbols) and medium. Samples were evaluated using Mann–Whitney U-test. P-value < 0�04
by Kruskal–Wallis test.
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respectively, and the mean percent positive PD-L1 or CD86 cells were 7% and 47%, respectively, for cells incubated in resting conditions (med-

ium alone). Statistical analysis was performed with Wilcoxon matched-pairs signed-ranks test.
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Figure 5. Inhibition of endosomal acidification, TLR7/8 or TLR7/8/9 impairs monocyte activation by cowpea mosaic virus (CPMV). Peripheral
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to CPMV activity. CPMV activity was partially blocked

by an endocytosis inhibitor (dynasore) that has been

demonstrated to partially interfere with CPMV internal-

ization via caveolar-dependent endocytosis.11,52 CPMV

activity was also blocked by an endosomal acidification

inhibitor (Chloroquine) and by a TLR7/8 antagonist.53,54

Moreover, CPMV inhibition by Syk inhibitor resembles

the inhibition of a canonical TLR7 agonist, Imiquimod.

Overall, these data are consistent with an important role

for endocytic TLR signalling in CPMV-mediated activa-

tion of primary human cells (summarized in Fig. 6).

Although we have implicated the involvement of TLR7/8

in the activation of human cells by CPMV, we also find evi-

dence that CPMV and a canonical TLR7 agonist, Imiqui-

mod, may have different effects on human monocytes. In

particular, we found that CPMV was more efficient at

inducing CXCL10 expression in human monocytes than

Imiquimod, despite similar induction of other activation

indices. Our multiplex analysis for cytokines and chemoki-

nes confirmed the robust release of CXCL10 from mono-

cyte following CPMV stimulation. CXCL10 has been

shown to be induced in response to type I and II IFNs, and

can act as a chemoattractant to CXCR3-expressing immune

cells such as monocytes, DCs, NK cells and T-cells.55–61

Notably, CXCL10 has been found to play a key role in

directing T-cell infiltration into solid tumours, making it

possible that induction of this chemokine by CPMV in

tumour-associated monocytes or macrophages could con-

tribute to in vivo antitumour activity of CPMV.62,63 In con-

trast to the effects on CXCL10 release, cytokines/

chemokines induced by NF-jB-dependent signalling (IL-6,

IL-8, IL-1b or TNF-a) were not induced by CPMV. Imi-

quimod, however, caused the induction of IL-6 and IL-8 in

monocytes.64 This observation raises the possibility that

CPMV activates endosomal TLRs in a manner that skews

responses towards IRF-signalling, rather than NF-jB-sig-
nalling. Perhaps, this might be a consequence of different

interactions between TLR7/8 and chemical or viral RNA

ligands.65 Alternatively, CPMV may mediate some of its

activity via other receptors that are distinct from TLR7/8.

Further studies will be required to discern these possibili-

ties and the molecular mechanisms involved.
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